PRACTICAL WASTEWATER TREATMENT
To Marianne for her invaluable support, and Laura and Jennifer for being themselves
CONTENTS

Preface

1 Introduction

- Introduction, 1
- Water Composition, 2
- Pure Water, 2
- Salts and Ions in Water, 6
- Principal Contaminants and Ions in Water and Measurement Methods, 7
- Sources of Water, 8
- Water Quality, 11
- Water Quality Regulations—Legal Structure, 12
- Rules and Regulations for Water Quality Control, 13
- Applications, 26
- Sample Problem, 28
- Solution, 28
- Drinking Water Quality Standards: USA and International Standards, 29

2 Effects of Pollution

- Effluent Toxicity Testing, 37
- Oxygen Depletion—Biochemical Oxygen Demand, 39
- Oxygen Uptake in a Stream—The Oxygen Sag Equation, 42
- Biology of Polluted Water, 43
CONTENTS

3 Flow Measurement
Review of Open Channel Hydraulics, 47
Determining Normal and Gradually Varied Flows, 52
Types of Flowmeters, 54
Weir Plates, 56

4 Sampling and Statistical Considerations
Errors in Process Measurements, 61
Statistical Distributions, 64
Lognormal Distributions, 64
Weibull Distributions, 65
Probable Error, 67
Repeat Measurements, 68
Sampling, 69

5 Important Concepts from Aquatic Chemistry
Common Ion Species, 71
Most Important Chemicals in the Water Environment, 72
Carbonate Chemistry, 72
Chemical Water Softening, 79
Excess Lime Process, 80
Metals Removal by Precipitation, 82
Heavy Metals, 83
Chromium Reduction and Metals Precipitation, 83
Silicates in Treatment Systems, 87
Nitrogen, 87
Sulfur, 88
Phosphorous, 88

6 Elements of Biological Treatment
Introduction, 91
BOD and COD Solids, 92
Suspended Solids, 93
Biological Growth Equation, 94
Biological Growth & the Monod Equation, 96
Principles of Biological Treatment Systems, 100
Activated Sludge & Its Variations, 102
Biological Treatment of Difficult Wastes, 110
Modeling the Biological Process, 111
Steady, 112
JASS, 112
Scilab/SeTS, 113
Available Commercial Modeling Tools, 113
Modeling Guidance, 119
The IWA Models for Activated Sludge, 122

7 Precipitation and Sedimentation 125
Theory of Sedimentation, 125
Clarifiers and Their Design, 126
Lamellas and Specialty Devices, 129

8 Filtration Theory and Practice 135
Depth Filters Design: Theory and Practice, 135
Filtration Hydraulics, 138
Hydraulics of Filter Washing, 139
Skin Filters, 141
Filter Elements and Design, 143

9 Disinfection 149
General, 149
Rate of Kill—Disinfection Parameters, 149
Status of U.S. Drinking Water, 152
Chlorine, 155
Ozone, 162
Ultraviolet Light, 164
Other Disinfecting Compounds, 164

10 Nitrogen Removal 173
Nitrogen Chemistry and Forms, 173
Ammonia Toxicity and Nitrogen Loading, 175
Nitrate, 176
Nitrogen Removals, 176
mixed Media and Attached Growth Systems, 189
Conclusions, 189

11 Phosphorous Removal 191
General, 191
Biological Phosphorous Removal, 194
Chemical Phosphorous Removal, 198
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Anaerobic Treatment</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Basic Anaerobic Processes, 203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaerobic Pretreatment, 206</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sludge Digestion, 208</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sludge Treatment, 210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaerobic Digester Model ADM1, 210</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Micro/Ultrafiltration</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Introduction to Membrane Separations and Microfiltration, 211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design Values, 215</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process Selection, 215</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Reverse Osmosis</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Introduction, 221</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mass Transfer Theory, 221</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Membrane Selection, 222</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Membrane Materials, 223</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Membrane Configurations, 223</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RO Design Considerations, 224</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design Parameters, 225</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Carbon Adsorption</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Breakthrough Curves, 231</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Freundlich and the Langmuir Equations, 232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon Adsorption Physical Coefficients and Economics, 232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PACT™ Process, 233</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Ion Exchange</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Introduction, 237</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resins, 237</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selectivity, 239</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selectivity Coefficient, 239</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design Considerations, 240</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Dissolved Air Flotation and Techniques</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Design Basics for DAF, 243</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating Parameters, 244</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electroflotation, 247</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrocoagulation, 251</td>
<td></td>
</tr>
</tbody>
</table>
18 Coagulation, Flocculation, and Chemical Treatment

 Introduction, 255
 Flocculation and Mixing, 258
 Practice, 259
 Modeling, 259

19 Waste Topics

 Oily Wastewaters, 261
 Blood and Protein, 262
 Milk Wastes, 263
 Refinery Wastes, 263
 Metal Plating Wastes, 263
 Starch Wastes, 264
 Phenols and Chemical Plant Wastes, 264
 Small Waste Flows, 264
 Final Thoughts, 264

Index
Over the years I have been fortunate enough to meet some very interesting people and have some fantastic experiences in the environmental field. In 1998, Nina Webber, the then Educational Director for the American Institute of Chemical Engineers approached me to teach a course in wastewater treatment because an existing instructor balked at the assignment of going on to teach in Mexico. This book was developed from that teaching assignment.

This is a teaching tool for the chemical and environmental engineering professionals. It is not designed to be a textbook or primer for those entering this profession because it lacks adequate development of theory for that purpose and relies upon plant experience and a mastery of essential engineering fundamentals for many of the subjects. This book is more a cross between a chemical engineering handbook and a refresher tool for the plant engineer who suddenly finds himself or herself having to learn to water and wastewater treatment and does not know where to start. I hope that it serves that purpose.

The theoretical development generally tends to be sparse except in the area of biological wastewater treatment and some elements of hydraulics. I have also placed a good bit of emphasis on the development of biological modeling of wastewater treatment plants because I firmly believe that it is the best way to design facilities, and it is the wave of the future. I have, through my own work, found out that most wastewater treatment plants designed by municipal codes are between 30% and 50% overdesigned, and when the consultant applies a standard allowance for growth that often means that the plant is 100% or more overdesigned and wasteful of precious municipal resources and money. The design of a system with that much additional
capacity leads to sloppy operation and poor control. It also leads to a perception that wastewater plant operators do not need to understand the biological processes, and that they are little more than mechanics.

Finally, I have included some design hints and practical experience where it may be helpful. The focus has been to provide a framework of useful tools and helpful aids where they can be found, including links to the World Wide Web, and various other textbooks where they treat specific subjects.

I have taken some pains to assemble various Web sources and references, including helpful papers and articles and even computer programs on to a disk, which was originally supplied as a supplement to the course. The disk is available from me for a modest fee.

Questions, comments, flames, and other stuff should be directed to my attention via my e-mail address: dlr@mindspring.com

Dave Russell
March, 2006